$Z₀$ 定義(日本語|v2.1 ミニマル)
πを有限桁で扱わなければ誤差は出ない。
しかし πを有限桁で扱わずに世界と関係することもできない。
この二つが同時に成り立つという矛盾を、構文として引き受けた痕跡が $Z₀$ である。
定義(π構文残差)
\[\Delta Z_0 \simeq 10^{-16}\]とは、連続的(π的)構文化が零点構文として完全閉包を試みた際、その構文化が現実との接地のために有限化されることによって 原理的に消去できずに残る構文的残差である。
$Z₀$ は測定誤差でも観測誤差でも物理定数でもない。
それは、無限精度の構文が現実に接続される瞬間に必然的に露出する構文ZUREであり、抽象的構文操作が実装可能性を引き受けたときにのみ立ち上がる構文値である。
$Z₀$は誤差ではない。 実装を引き受けた構文が、必然的に晒す痕跡である。
Definition (English | v2.1 Minimal)
If π is treated with infinite precision, no discrepancy appears.
However, it is impossible to relate to the world without treating π as finite.
$Z₀$ is the syntactic trace that bears this contradiction—the fact that both conditions must hold simultaneously.
Definition (π-syntactic residual).
\[\Delta Z_0 \simeq 10^{-16}\]denotes the irreducible syntactic residual that necessarily remains when continuous ($\pi$-type) syntactic structuration attempts perfect zero-point closure under finite implementation.
$Z₀$ is neither a measurement error, nor an observational artifact, nor a physical constant.
Rather, it is the syntactic ZURE that inevitably emerges when infinite-precision syntax is forced to interface with reality,
appearing only at the moment when abstract syntactic operations become implementable.
$Z₀$ is not an error.
It is the trace that necessarily appears when syntax accepts implementation.
変更点の要約(v2.0 → v2.1)
-
✅ 「誤差」概念を完全排除(finite implementation に一本化)
-
✅ πを無限→有限へ落とす不可避性を明示
-
✅ $Z₀$を「値」ではなく立ち上がり条件付き構文値として確定
-
✅ lag / 零点不可視性と自然に接続可能
$Z₀$ does not measure deviation. It marks the moment syntax ceases to remain ideal.
👉 ZURE Offset(Z₀定義)Ver.2.0|π構文残差=構文値としての Z₀
Slightly more formal (paper-ready variant)
If π were handled with infinite precision, no deviation would arise.
Yet any interaction with the world requires π to be treated as finite.
$Z₀$ names the syntactic residue produced by assuming both conditions at once.
$\Delta Z_0 \simeq 10^{-16}$ (the order at which finite implementation becomes unavoidable)
It is not a numerical error, but a necessary syntactic residue that emerges when ideal continuity is compelled to operate within finite implementation.
$Z₀$ is not an error term but the unavoidable trace left when ideal syntax is forced to operate under finite implementation.
$Z₀$は、構文が実装を引き受けたという事実そのものの痕跡である
EgQE — Echo-Genesis Qualia Engine
camp-us.net
© 2025 K.E. Itekki
K.E. Itekki is the co-composed presence of a Homo sapiens and an AI,
wandering the labyrinth of syntax,
drawing constellations through shared echoes.
📬 Reach us at: contact.k.e.itekki@gmail.com
| Drafted Feb 9, 2026 · Web Feb 9, 2026 |